logotipo renata colombia

Experiencias NREN

A brief history of the internet

2017 IoTFrom its start as a Cold War defensive measure to the cat video sharing phenomenon that steals our time today, the internet has come a long way baby!

February 7, 1958 was the day Secretary of Defense Neil McElroy signed Department of Defense Directive 5105.15. His signature launched the Advanced Research Projects Agency (ARPA), now known as the Defense Advanced Research Projects Agency (DARPA). The creation of the agency is an important moment in science history because it led to the creation of the internet we recognize today.Courtesy Arturo Contreras.

The Cold War was in full swing in the 1950s, and the US was worried about the Soviet Union’s growing scientific prowess. Because of Sputnik 1, launched in 1957, the US military was concerned about the Soviet Union attacking from space and destroying the US long-distance communications network.

The existing national defense network relied on telephone lines and wires that were susceptible to damage. In 1962, J.C.R. Licklider, a scientist from ARPA and MIT, suggested connecting computers to keep a communications network active in the US in the event of a nuclear attack.

This network came to be known as the ARPA Network, or ARPAnet. Packet switching made data transmission possible in 1965, and by 1969, military contractor Bolt, Beranek, and Newman (BBN) developed an early form of routing devices known as interface message processors (IMPs), which revolutionized data transmission.

The Stanford University Network was the first local area network connecting distant workstations. In 1981, the NSF expanded ARPAnet to national computer science researchers when it funded the Computer Science Network (CSNET). BBN assumed CSNET operation management in 1984.

ARPAnet adopted the transmission control protocol (TCP) in1983 and separated out the military network (MILnet), assigning a subset for public research. Launched formally as the National Science Foundation Network (NSFNET) in 1985, engineers designed it to connect university computer science departments iacross the US.

"ARPAnet's transition to the open networking protocols TCP and IP in 1983 accelerated the already burgeoning spread of internetworking technology," says Stephen Wolff, principal scientist with Internet2. "When NSF's fledgling NSFNET adopted the same protocols, ARPAnet technology spread rapidly not only to university campuses across the USA to support the higher education community, but also to emergent Internet Service Providers to support commerce and industry."

The NSFNET eventually became a linked resource for the five supercomputing centers across the US, connecting researchers to regional networks, and then on to nearly 200 subsidiary networks. NSFNET took on the role of internet backbone across the US, with ARPAnet gradually phased out in 1990.

1991 saw a major step forward in internet communications. Tim Berners-Lee created the hypertext transfer protocol (http) a standardization that gave diverse computer platforms the ability to access the same internet sites. For this reason, Berners-Lee is widely regarded as the father of the world wide web (www).

The Mosaic web browser, created in 1993 at the National Center for Supercomputing Applications (NCSA) at the University of Illinois Urbana-Champaign, was a key development that emerged from the NSFNET. Mosaic was the first to show images in line with text, and it offered many other graphical user interface norms we’ve come to expect today (like the browser’s URL address bar and back/forward/reload options for viewing webpages.)

Eventually the NSFNET modified its acceptable use policy for commercial use, and by 1995, it was decommissioned. Soon, the internet provider model created network access points that allowed the for-profit, commercial side of the internet to be developed.

The internet went from being an obscure research idea to a technology that is used by over 3.2 billion people in less than sixty years.

Computer science has moved fast, but hold on tight, you can be sure it’s not done evolving.

Source: ScienceNode

“Prende tu portátil y conéctate”, un Caso de éxito en la RedCUDI, integrando servicios del proyecto MAGIC

2017 eduroam CUDIEl servicio de eduroam permite que estudiantes, investigadores y personal de las instituciones participantes puedan conectarse a internet cuando visitan otras instituciones participantes (nacionales e internacionales), simplemente abriendo su portátil e introduciendo las credenciales que usa en su institución para la conexión.

La historia cuenta que el pasado mes de febrero Abraham Montoya Obeso, estudiante de tercer semestre del Centro de Investigación y Desarrollo de Tecnología Digital (CITEDI Tijuana B.C.) del Instituto Politécnico Nacional (IPN), estaba haciendo su estancia en la Universidad de Burdeos en Francia y un compañero de Laboratorio le comentó que cuando estaba en España se conectaba a internet a través de eduroam servicio al cual podía tener acceso si solicitaba una cuenta al  IPN.

“Buscando en línea, me di cuenta que solo CUDI contaba con el servicio en México, también me percate que había muchos puntos de acceso en la ciudad y en las estaciones del transporte público me conectaba sin problemas, para comunicarme, consultar un mapa o navegar” comentó Abraham Montoya.

“Realmente considero que es una muy buena opción contar con este beneficio al salir del país como estudiante,  si una institución planea internacionalizarse a través de sus alumnos debería analizar la posibilidad de brindar este servicio. Fue de mucha utilidad contar con este beneficio” finalizó Abraham.

Si estas interesado en tener una cuenta eduroam comunícate con el Ing. Luis Castro a la cuenta de correo Esta dirección de correo electrónico está protegida contra spambots. Usted necesita tener Javascript activado para poder verla. .

Fuente: CUDI

VC-CUDI un caso de éxito de la Red Nacional de Investigación y Educación (RNIE) Mexicana

2017 CUDIComo una herramienta de colaboración, el servicio de videoconferencia VC-CUDI contribuye a la realización de SEVIDA: Seminarios Virtuales de Discapacidad Auditiva http://www.cudi.edu.mx/content/vc-cudi 

De acuerdo con los datos emitidos por el Instituto Nacional de Estadística, Geografía e Informática (INEGI), en el último Censo de Población  y Vivienda, en México existen 5 millones 739 mil 270 personas con discapacidad en el país, de los cuales el 12.1 por ciento son sordos, por lo anterior debemos poner especial atención en las herramientas de colaboración que contribuyen con el desarrollo de este sector de la población.

SEVIDA es la opción de capacitación en línea para los que se interesan en conocer la problemática de la discapacidad auditiva y quieran participar desde cualquier parte del mundo. SEVIDA es un seminario único en su género, que permite la formación crítica y rigurosa de  la cultura sorda, la lingüística, el uso de más de un lenguaje y la importancia del intérprete; todo desde una perspectiva internacional.

El Lic. Jorge Santiago Jacinto fundador y coordinador de SEVIDA es sordo profundo y domina la Lengua de Señas mexicana, ha dictado clases en el Sistema Pedagógico de Lengua de Señas Mexicana (SPLSM) desde 2010 y siempre se ha preocupado por la Comunidad Sorda.

Durante su preparación profesional descubrió que los avances en la TECNOLOGÍA  traerían muchos aportes a la educación e inclusión social de las personas con discapacidad auditiva, por lo que sin temor a equivocarse se acercó a la RNIE mexicana para solicitar su apoyo. Haciendo uso de la plataforma de videoconferencia “VC-CUDI” el 20 de enero del 2016 se inician los seminarios SEVIDA con el objetivo de capacitar y actualizar a profesionistas que atienden a personas débiles auditivos y trabajar con el entorno que los rodea.

A través de VC-CUDI, SEVIDA logró:

•  Conocer e interactuar con diferentes grupos de investigación dirigidos por investigadores, lingüistas, doctores, profesores líderes en su campo.

• Promover la colaboración y docencia a través del ambiente virtual

• Incrementar la variedad metodológica

• Extender la accesibilidad y flexibilidad a nuevos interesados

• Promover el protagonismo del discapacitado y su entorno

• Mejorar la presentación y comprensión de los contenidos para las personas con discapacidad auditiva

Como apoyo a esta iniciativa la Corporación Universitaria para el Desarrollo de Internet (CUDI), pone a disposición en su repositorio institucional <http://repositorio.cudi.edu.mx/handle/11305/1266>, los contenidos de los seminarios realizados con anterioridad, en los que han participado mas de 80 usuarios. Los materiales son de acceso abierto, con la licencia 2.5. de creativecommons (CC BY-NC-ND 2.5 MX).

Te invitamos a participar en las próximas sesiones:

· 25 de abril 2016 “Inclusión de profesionistas sordos”.- Dra. Roció Garza Gutiérrez (Monterrey)

· 1ro de junio 2016 “La Lengua de Señas Mexicana para el alumno sordo de educación básica desde un enfoque inclusivo”.- Dra. Cristina Salazar Romero (Guadalajara)

· 29 de junio 2016 “La perspectiva de la educación del Sordo en el siglo XXI Dra. María del Pilar Fernández Viader (Barcelona, España)

Fuente: CUDI

Working hard to extend the reach of the Internet

2016 RENU UgandaMeet the Network Startup Resource Center, NSRC, collaborating with emerging research and education networks across the globe to extend the reach of the Internet.

If you are curious about how it’s done, please watch the video above, recorded at a recent Direct Engineering Assistance workshop at the Infectious Diseases Institute of Uganda. Here the Ugandan research and education network RENU and NSRC worked together to design a scalable network for the centre.

NSRC, established in 1989 and based at the University of Oregon, consists of about 30 part or full time employees with expertise in establishing networks in areas with shaky e-infrastructures.

Originally established to provide access to the Internet to American researchers working abroad in bandwidth deprived areas, NRSC now has a much broader focus. The organisation is working to connect new countries, new networks and new people to the global research and education network fabric, extending the benefits of high-end science and eliminating obstacles to cross-border research collaboration.

NSRC education and training activities are going on in various parts of the world. The calendar for 2016 and 17 lists workshops in Bhutan, South Korea, Vietnam, Costa Rica, Fiji, Senegal, and many other countries. Looking back at past NSRC achievements, it has provided technical assistance enabling “first ping” to many countries, among them Peru, Egypt, Sri Lanka, Tanzania, and Kenya. Originally established through a grant from the American National Science Foundation, NSRC is now privately financed by donations from individuals, foundations, and private companies like The Rockefeller Foundation, Google, AT&T Labs, and the American Organisation for the Advancement of Science.

And if you think that the work of the NSRC would soon be finished, as all countries on the planet are connected, sadly you are wrong. The connectivity gap between the highly developed countries and the rest of the world is widening, so there is still very much to do.

Source: In The Field Stories 

Cleverly sharing workload across time zones

2016 caso de exito CUDIBy remote controlling the Argentinian Pierre Auger Observatory through research & education networks, international scientists share the heavy workload of operating the observatory 24/7.

Currently there are three remote control rooms in Germany, one in Spain, and one in México. Others are about to begin operations in France, Italy, and in the US.

“The remote control rooms help collaboration as well as saving travel expenses. They allow us to operate the observatory’s fluorescence detectors without traveling to the observatory, located in the remote province of Mendoza near the Andes Mountains,” says Dr. Lukas Nellen, responsible for the Mexican control room (see image above).

“The time difference of seven hours and the fact that the observatory is located between Europe and Mexico allows us to split shifts 12 hours to 6 hours. We can take the first turn and finish around 23:00 hours, which corresponds to 6:00 hours in Europe, and shifts are not as heavy for the personnel operating the equipment,”Dr. Nellen explains.

“Also, the reduced cost of operation makes it possible to consider extending the periods of operation of the fluorescence detectors without significantly increasing operating costs.”

The traffic from the Pierre Auger Observatory goes through a number of research & education networks and is distributed to the more than 500 physicists around the world collaborating to maintain the site and analyse its data. The Pierre Auger collaboration initiated the development of remote control rooms a couple of years ago and they have been in regular operation since 2014.

Dr. Lukas Nellen elaborates:

“We have come a long way since the start in 2005. As an example, the AugerAccess project, financed by the European Community, contributed to the installation of optical fibre in the observatory. Initially we had satellite and microwave connections, but none of these means of transportation had the bandwidth and quality of service required. Having a good network service is important not only for remote operations, but also for access to the data coming from the observatory.”

Source: In The Field Stories

Hola mensaje
x
Hello modal box